

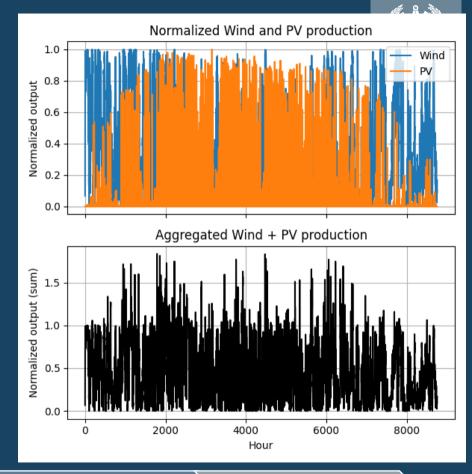
Hybrid energy parks

David Steen, Electric power engineering, Chalmers

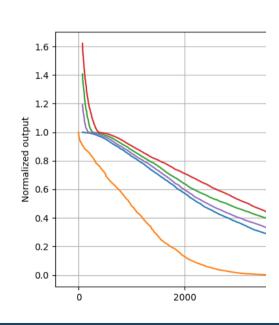
Results from Johan Söderbergh's master thesis conducted at SR energy

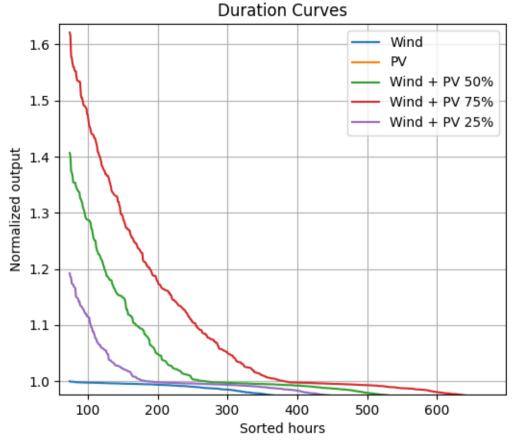
Design of an Optimal Investment Model for a Hybrid Energy Park

An Investigation of the Profitability of a Hybrid Energy Park with Wind Power, Solar PV and Battery Storage


Master's Thesis in Sustainable Energy Systems

Johan Söderbergh

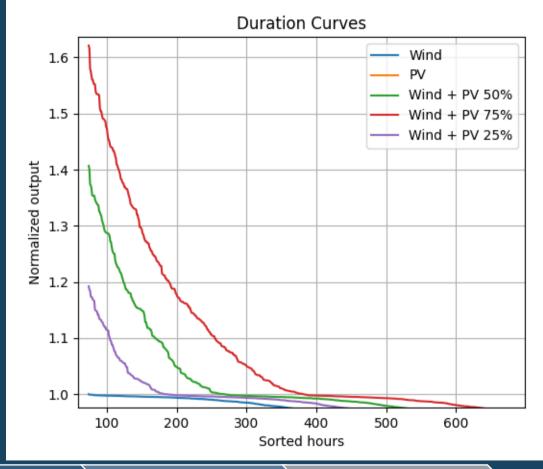

DEPARTMENT OF ELECTRICAL ENGINEERING DIVISION OF ELECTRIC POWER ENGINEERING Chalmers University of Technology Gothenburg, Sweden 2025 www.chalmers.se


Background

- Combining different production and storage resources could potentially reduce connection cost increasing the grid utilization.
- With the battery one could also provide additional value through arbitrage and ancillary services

Background

Background


Modell

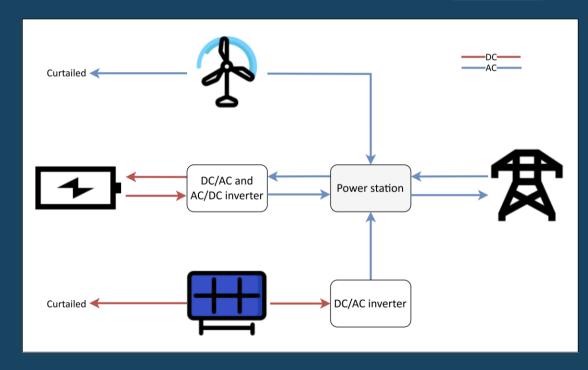
Results

Conclusions

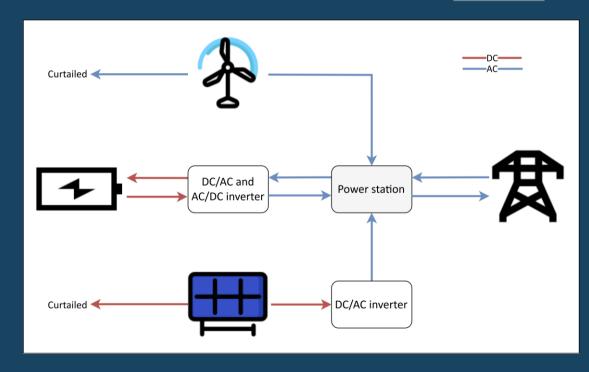
Background

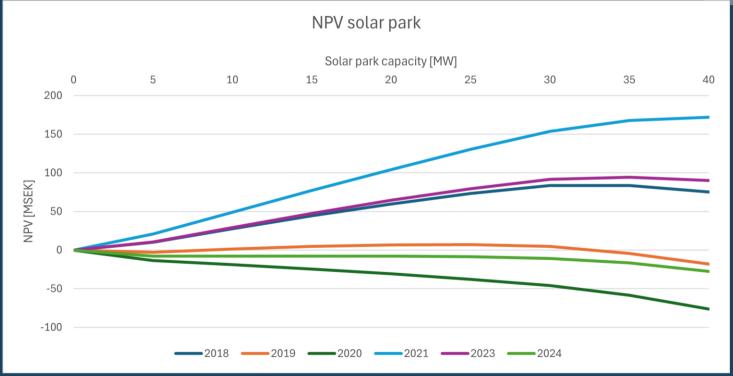
% PV	Curtalied energy
100%	15,6%
75%	10,4%
50%	6,7%
25%	3,9%

Background – Case study


- Investigate the benefit of installing PVs to an existing wind farm
 - 30 MW
 - Located in SE3
- Investigate the benefit of installing batteries in combination to the site
 - · Which size would be best suited
 - How would aging affect the results

Optimization Model


- Aim to maximize revenue considering:
 - Efficiency
 - Spot prices
 - · Battery and PV aging
- Net present value


Optimization Model

- Aim to maximize revenue considering:
 - Efficiency
 - Spot prices
 - · Battery and PV aging
- Net present value
- PV = 5200 SEK/kW
- BES = 1150 SEK/kWh
- Price data 2018-2024

Results – PV

NPV [MSEK]		Solar park capacity									
2023	MWh MW	0	5	10	15	20	25	30	35	40	
	0	0,00	10,54	29,07	47,43	64,64	79,33	91,59	94,47	63,03	
	1	-0,18	11,04	29,64	48,02	65,19	79,87	91,82	94,70	90,24	
	2	-0,77	10,93	29,68	48,13	65,30	80,08	91,67	96,37	92,68	
Battery	3	-1,74	10,09	29,07	47,62	64,81	79,61	91,44	94,55	90,41	
capacity	4	-3,33	8,67	27,80	46,50	63,74	78,41	90,24	95,05	91,75	
	5	-5,27	6,72	26,02	44,81	62,18	76,99	88,92	92,43	88,44	
	6	-7,85	4,05	23,27	42,13	59,54	74,33	86,18	91,13	87,95	
	7	-10,73	1,05	20,33	39,17	56,65	71,58	83,65	87,36	83,31	
	8	-13,64	-1,87	17,45	36,20	53,81	68,69	80,88	84,63	80,84	
	9	-16,81	-5,30	14,02	32,63	50,15	65,21	77,34	82,26	79,25	
	10	-20,40	-8,93	10,33	28,82	46,26	61,28	73,36	77,16	73,04	
NPV [MSEK]					Solar parl	k capacity					

NPV [MSEK]		Solar park capacity											
2024	MWh MW	0	5	10	15	20	25	30	35	40			
	0	0,00	-10,27	-12,56	-14,88	-17,30	-20,33	-24,51	-32,22	-44,43			
	1	-0,72	-10,77	-13,02	-15,34	-17,77	-20,78	-24,96	-32,69	-44,84			
	2	-1,98	-11,88	-14,06	-16,36	-18,78	-21,80	-25,98	-33,20	-45,12			
Battery	3	-3,81	-13,76	-15,91	-18,18	-20,59	-23,58	-27,65	-35,19	-47,14			
capacity	4	-6,15	-16,15	-18,34	-20,60	-22,95	-25,91	-30,04	-37,16	-48,79			
	5	-8,56	-18,59	-20,70	-22,91	-25,25	-28,20	-32,23	-39,71	-51,37			
	6	-10,86	-20,90	-22,98	-25,20	-27,59	-30,48	-34,57	-41,71	-53,27			
	7	-13,49	-23,40	-25,45	-27,70	-30,22	-32,77	-37,10	-44,30	-55,99			
	8	-16,25	-26,28	-28,33	-30,55	-32,93	-35,85	-39,84	-47,30	-58,78			
	9	-19,06	-29,06	-31,16	-33,58	-35,93	-38,81	-42,97	-50,18	-61,44			
9	10	-21,90	-31,77	-33,94	-36,19	-38,60	-41,50	-45,69	-53,24	-64,77			

No battery aging cost

NPV [MSEK]	Solar park capacity												
2023	MWh MW	0	5	10	15	20	25	30	35	40			
	0	0,00	10,54	29,07	47,43	64,64	79,35	91,59	94,47	89,93			
	1	0,07	11,28	29,87	48,27	65,48	80,23	92,27	95,38	90,97			
	2	0,16	11,77	30,56	49,01	66,26	80,98	92,67	97,28	93,63			
Battery	3	0,22	12,05	31,10	49,71	66,95	81,76	93,87	97,09	92,98			
capacity	4	0,29	12,21	31,52	50,27	67,59	82,27	94,85	98,60	95,39			
	5	0,33	12,34	31,85	50,76	68,15	82,95	94,87	98,05	94,31			
	6	0,39	12,43	32,07	51,17	68,71	83,69	95,70	99,87	96,92			
	7	0,44	12,52	32,24	51,50	69,17	84,28	96,20	99,52	95,95			
	8	0,49	12,54	32,37	51,77	69,67	84,93	97,14	100,19	96,73			
	9	0,54	12,57	32,50	51,99	70,02	85,27	97,13	101,73	99,06			
	10	0,59	12,57	32,58	52,19	70,46	85,67	98,23	101,46	98,23			

NPV [MSEK]	Solar park capacity												
2024	MWh MW	0	5	10	15	20	25	30	35	40			
	0	0,00	-10,27	-12,56	-14,88	-17,30	-20,33	-24,51	-32,22	-44,43			
	1	-0,45	-10,49	-12,76	-15,07	-17,48	-20,47	-24,59	-32,16	-44,28			
	2	-0,88	-10,82	-12,99	-15,28	-17,70	-20,71	-24,87	-32,14	-44,00			
Battery	3	-1,33	-11,22	-13,31	-15,54	-17,92	-20,85	-24,91	-32,34	-44,12			
capacity	4	-1,77	-11,64	-13,65	-15,82	-18,16	-21,10	-25,17	-32,37	-43,93			
	5	-2,23	-12,09	-14,08	-16,13	-18,46	-21,32	-25,36	-32,81	-44,35			
	6	-2,69	-12,56	-14,48	-16,52	-18,76	-21,60	-25,58	-32,68	-43,96			
	7	-3,13	-13,02	-14,88	-16,97	-19,14	-21,91	-25,80	-33,10	-44,39			
_	8	-3,59	-13,50	-15,31	-17,39	-19,56	-22,24	-26,12	-33,28	-44,44			
	9	-4,05	-13,98	-15,75	-17,79	-19,92	-22,57	-26,38	-33,22	-44,10			
	10	-4,51	-14,44	-16,21	-18,18	-20,34	-23,00	-26,74	-33,70	-44,63			

Battery revenue x2

NPV [MSEK]	Solar park capacity												
2023	MWh MW	0	5	10	15	20	25	30	35	40			
	0	0,00	10,54	29,07	47,43	64,64	79,35	91,59	94,47	89,93			
	1	3,78	15,69	34,36	52,77	69,94	84,65	96,59	99,34	95,07			
	2	5,85	18,75	37,73	56,27	73,46	88,26	99,86	104,36	101,07			
Battery	3	6,96	20,00	39,41	58,13	75,33	90,27	102,06	105,24	101,59			
capacity	4	6,36	19,80	39,52	58,53	75,86	90,61	102,51	107,44	104,78			
	5	5,29	18,66	38,69	57,87	75,50	90,40	102,43	106,26	102,83			
	6	2,77	15,97	35,81	55,07	72,77	87,73	99,70	105,05	102,58			
	7	-0,50	12,47	32,49	51,78	69,60	84,75	97,11	101,21	97,79			
	8	-3,58	9,43	29,49	48,60	66,67	81,79	94,31	98,54	95,65			
	9	-7,28	5,15	25,29	44,09	61,97	77,47	89,97	95,51	93,45			
	10	-11,72	0,64	20,69	39,26	56,96	72,40	84,71	89,00	85,38			

NPV [MSEK]	Solar park capacity										
2024	MWh MW	0	5	10	15	20	25	30	35	40	
	0	0,00	-10,27	-12,56	-14,88	-17,30	-20,28	-24,30	-31,66	-43,66	
	1	2,34	-7,38	-9,61	-11,91	-14,33	-17,32	-21,49	-29,17	-41,25	
	2	3,07	-6,44	-8,49	-10,76	-13,13	-16,06	-20,09	-27,35	-39,01	
Battery	3	2,10	-7,41	-9,44	-11,64	-14,00	-16,88	-20,82	-28,18	-39,85	
capacity	4	0,19	-9,47	-11,55	-13,68	-15,98	-18,88	-22,74	-29,71	-40,90	
	5	-2,04	-11,70	-13,69	-15,74	-17,99	-20,82	-24,68	-31,97	-42,93	
	6	-3,92	-13,61	-15,60	-17,77	-20,12	-22,78	-26,58	-33,56	-44,52	
	7	-6,43	-16,11	-17,84	-19,98	-22,29	-24,92	-28,69	-35,89	-46,90	
_	8	-9,13	-18,98	-20,67	-22,82	-25,13	-27,91	-31,72	-38,74	-49,61	
	9	-11,98	-21,73	-23,65	-25,84	-28,19	-31,08	-35,25	-42,05	-52,77	
	10	-14,54	-24,34	-26,28	-28,42	-30,83	-33,67	-37,83	-44,94	-55,64	

Summary

- Hybrid parks can increase utilization of grid connection
 - Economically it depends on future electricity prices
- Batteries can improve the value further
 - Increases further if additional services can be provided
- Further studies needed to see how the BES utilization is limited in a hybrid park compared to a sole BES installation

Contact

- Johan Söderbergh
 - Johan.soderbergh@gmail.com

- David Steen
 - David.steen@chalmers.se

Download thesis

CHALMERS UNIVERSITY OF TECHNOLOGY